Coarse-grained kinetic computations for rare events: application to micelle formation.

نویسندگان

  • Dmitry I Kopelevich
  • Athanassios Z Panagiotopoulos
  • Ioannis G Kevrekidis
چکیده

We discuss a coarse-grained approach to the computation of rare events in the context of grand canonical Monte Carlo (GCMC) simulations of self-assembly of surfactant molecules into micelles. The basic assumption is that the computational system dynamics can be decomposed into two parts-fast (noise) and slow (reaction coordinates) dynamics, so that the system can be described by an effective, coarse-grained Fokker-Planck (FP) equation. While such an assumption may be valid in many circumstances, an explicit form of FP equation is not always available. In our computations we bypass the analytic derivation of such an effective FP equation. The effective free energy gradient and the state-dependent magnitude of the random noise, which are necessary to formulate the effective Fokker-Planck equation, are obtained from ensembles of short bursts of microscopic simulations with judiciously chosen initial conditions. The reaction coordinate in our micelle formation problem is taken to be the size of a cluster of surfactant molecules. We test the validity of the effective FP description in this system and reconstruct a coarse-grained free energy surface in good agreement with full-scale GCMC simulations. We also show that, for very small clusters, the cluster size ceases to be a good reaction coordinate for a one-dimensional effective description. We discuss possible ways to improve the current model and to take higher-dimensional coarse-grained dynamics into account.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on "Principal role of the stepwise aggregation mechanism in ionic surfactant solutions near the critical micelle concentration. Molecular dynamics study".

The validity of the assumption on the predominant contribution of the stepwise processes to the ionic micelle formation/destruction in the vicinity of critical micelle concentration was investigated by molecular dynamics simulation. A coarse-grained model was used to describe the surfactant/water mixture. The cluster size distribution was estimated directly from molecular dynamics simulations o...

متن کامل

Coarse-grained computations for a micellar system.

We establish, through coarse-grained computation, a connection between traditional, continuum numerical algorithms (initial value problems as well as fixed point algorithms), and atomistic simulations of the Larson model of micelle formation. The procedure hinges on the (expected) evolution of a few slow, coarse-grained mesoscopic observables of the Monte Carlo simulation, and on (computational...

متن کامل

Coarse-Grained Analysis of Microscopic Neuronal Simulators on Networks: Bifurcation and Rare-events computations

Abstract. We show how the Equation-Free approach for mutliscale computations can be exploited to extract, in a computational strict and systematic way the emergent dynamical attributes, from detailed large-scale microscopic stochastic models, of neurons that interact on complex networks. In particular we show how the Equation-Free approach can be exploited to perform system-level tasks such as ...

متن کامل

Competitive particle growth at different conditions of oligo-micelle formation in hydro-alcoholic solution of anionic double-chain emulsifier via batch emulsion polymerization of vinyl chloride

The condition of oligo-micelle formation of sodium di-isodecyl sulfosuccinate (SDIDS) emulsifier in hydroalcoholic solutions is used to study particle formation of vinyl chloride emulsion polymerization in a batch reactor. The change on micellization behavior was investigated by critical micelle concentration (CMC) and zeta potential parameters. To detect the occurrence of secondary nucleation ...

متن کامل

Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

We show how the “Equation-Free” approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 122 4  شماره 

صفحات  -

تاریخ انتشار 2005